Intensification of Northern Hemisphere subtropical highs in a warming climate
نویسندگان
چکیده
Semi-permanent high-pressure systems over the subtropical oceans, known as subtropical highs, influence atmospheric circulation, as well as global climate. For instance, subtropical highs largely determine the location of the world’s subtropical deserts, the zones of Mediterranean climate and the tracks of tropical cyclones. The intensity of two such high-pressure systems, present over the Northern Hemisphere oceans during the summer, has changed in recent years. However, whether such changes are related to climate warming remains unclear. Here, we use climate model simulations from the Intergovernmental Panel on Climate Change Fourth Assessment Report, reanalysis data from the 40-year European Centre for Medium-Range Weather Forecasts, and an idealized general circulation model, to assess future changes in the intensity of summertime subtropical highs over the Northern Hemisphere oceans. The simulations suggest that these summertime highs will intensify in the twenty-first century as a result of an increase in atmospheric greenhouse-gas concentrations. We further show that the intensification of subtropical highs is predominantly caused by an increase in thermal contrast between the land and ocean. We suggest that summertime near-surface subtropical highs could play an increasingly important role in regional climate and hydrological extremes in the future.
منابع مشابه
Intensification of the Southern Hemisphere summertime subtropical anticyclones in a warming climate
[1] The Southern Hemisphere subtropical anticyclones (SAs) are important features of the Earth’s climate. A broad consensus among Coupled Model Intercomparison Project phase 3 and phase 5 climate models suggests an intensification of summer SAs over SH oceans in association with the increase in greenhouse gas concentrations in the atmosphere. Diagnostic and modeling analyses conducted here demo...
متن کاملResponse of ocean ecosystems to climate warming
[1] We examine six different coupled climate model simulations to determine the ocean biological response to climate warming between the beginning of the industrial revolution and 2050. We use vertical velocity, maximum winter mixed layer depth, and sea ice cover to define six biomes. Climate warming leads to a contraction of the highly productive marginal sea ice biome by 42% in the Northern H...
متن کاملStratospheric dynamics and midlatitude jets under geoengineering with space mirrors and sulfate and titania aerosols
The impact on the dynamics of the stratosphere of three approaches to geoengineering by solar radiation management is investigated using idealized simulations of a global climate model. The approaches are geoengineering with sulfate aerosols, titania aerosols, and reduction in total solar irradiance (representing mirrors placed in space). If it were possible to use stratospheric aerosols to cou...
متن کاملExtensive wet episodes in Late Glacial Australia resulting from high-latitude forcings
Millennial-scale cooling events termed Heinrich Stadials punctuated Northern Hemisphere climate during the last glacial period. Latitudinal shifts of the intertropical convergence zone (ITCZ) are thought to have rapidly propagated these abrupt climatic signals southward, influencing the evolution of Southern Hemisphere climates and contributing to major reorganisation of the global oceanatmosph...
متن کاملNorthern Hemisphere summer monsoon intensified by mega-El Nino/southern oscillation and Atlantic multidecadal oscillation.
Prediction of monsoon changes in the coming decades is important for infrastructure planning and sustainable economic development. The decadal prediction involves both natural decadal variability and anthropogenic forcing. Hitherto, the causes of the decadal variability of Northern Hemisphere summer monsoon (NHSM) are largely unknown because the monsoons over Asia, West Africa, and North Americ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012